JavaW的技术专栏 A CSU coder

【洛谷-P1009】解题报告(高精度)

2020-03-19

C++

原始题目

P1009 阶乘之和

题目大意

阶乘之和

解题思路

爆ll,需要高精度,上ACM大数模板或者

人生苦短我用py

解题代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

#define rep(i, a, n) for (int i = a; i < n; ++i)
#define per(i, a, n) for (int i = n - 1; i >= a; --i)
#define pb push_back

#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4

class BigNum {
    private:
        int a[500]; //可以控制大数的位数
    int len; //大数长度
    public:
        BigNum()
{
    len = 1;
    memset(a, 0, sizeof(a));
} //构造函数
BigNum(const int); //将一个int类型的变量转化为大数
BigNum(const char*); //将一个字符串类型的变量转化为大数
BigNum(const BigNum&); //拷贝构造函数
BigNum& operator=(const BigNum&); //重载赋值运算符,大数之间进行赋值运算

friend istream& operator>>(istream&, BigNum&); //重载输入运算符
friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符

BigNum operator+(const BigNum&) const; //重载加法运算符,两个大数之间的相加运算
BigNum operator-(const BigNum&) const; //重载减法运算符,两个大数之间的相减运算
BigNum operator*(const BigNum&)const; //重载乘法运算符,两个大数之间的相乘运算
BigNum operator/(const int&) const; //重载除法运算符,大数对一个整数进行相除运算

BigNum operator^(const int&) const; //大数的n次方运算
int operator%(const int&) const; //大数对一个int类型的变量进行取模运算
bool operator>(const BigNum& T) const; //大数和另一个大数的大小比较
bool operator>(const int& t) const; //大数和一个int类型的变量的大小比较

void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
    int c, d = b;
    len = 0;
    memset(a, 0, sizeof(a));
    while (d > MAXN) {
        c = d - (d / (MAXN + 1)) * (MAXN + 1);
        d = d / (MAXN + 1);
        a[len++] = c;
    }
    a[len++] = d;
}
BigNum::BigNum(const char* s) //将一个字符串类型的变量转化为大数
{
    int t, k, index, l, i;
    memset(a, 0, sizeof(a));
    l = strlen(s);
    len = l / DLEN;
    if (l % DLEN)
        len++;
    index = 0;
    for (i = l - 1; i >= 0; i -= DLEN) {
        t = 0;
        k = i - DLEN + 1;
        if (k < 0)
            k = 0;
        for (int j = k; j <= i; j++)
        t = t * 10 + s[j] - '0';
        a[index++] = t;
    }
}
BigNum::BigNum(const BigNum& T)
: len(T.len) //拷贝构造函数
{
    int i;
    memset(a, 0, sizeof(a));
    for (i = 0; i < len; i++)
        a[i] = T.a[i];
}
BigNum& BigNum::operator=(const BigNum& n) //重载赋值运算符,大数之间进行赋值运算
{
    int i;
    len = n.len;
    memset(a, 0, sizeof(a));
    for (i = 0; i < len; i++)
        a[i] = n.a[i];
    return *this;
}
istream& operator>>(istream& in, BigNum& b) //重载输入运算符
{
    char ch[MAXSIZE * 4];
    int i = -1;
in >> ch;
    int l = strlen(ch);
    int count = 0, sum = 0;
    for (i = l - 1; i >= 0;) {
        sum = 0;
        int t = 1;
        for (int j = 0; j < 4 && i >= 0; j++, i--, t *= 10) {
            sum += (ch[i] - '0') * t;
        }
        b.a[count] = sum;
        count++;
    }
    b.len = count++;
    return in;
}
ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符
{
    int i;
    cout << b.a[b.len - 1];
    for (i = b.len - 2; i >= 0; i--) {
        cout.width(DLEN);
        cout.fill('0');
        cout << b.a[i];
    }
    return out;
}

BigNum BigNum::operator+(const BigNum& T) const //两个大数之间的相加运算
    {
        BigNum t(*this);
int i, big; //位数
big = T.len > len ? T.len : len;
for (i = 0; i < big; i++) {
    t.a[i] += T.a[i];
    if (t.a[i] > MAXN) {
        t.a[i + 1]++;
        t.a[i] -= MAXN + 1;
    }
}
if (t.a[big] != 0)
    t.len = big + 1;
else
    t.len = big;
return t;
}
BigNum BigNum::operator-(const BigNum& T) const //两个大数之间的相减运算
    {
        int i, j, big;
        bool flag;
        BigNum t1, t2;
        if (*this > T) {
    t1 = *this;
    t2 = T;
    flag = 0;
} else {
    t1 = T;
    t2 = *this;
    flag = 1;
}
big = t1.len;
for (i = 0; i < big; i++) {
    if (t1.a[i] < t2.a[i]) {
        j = i + 1;
        while (t1.a[j] == 0)
            j++;
        t1.a[j--]--;
        while (j > i)
            t1.a[j--] += MAXN;
        t1.a[i] += MAXN + 1 - t2.a[i];
    } else
        t1.a[i] -= t2.a[i];
}
t1.len = big;
while (t1.a[t1.len - 1] == 0 && t1.len > 1) {
    t1.len--;
    big--;
}
if (flag)
    t1.a[big - 1] = 0 - t1.a[big - 1];
return t1;
}

BigNum BigNum::operator*(const BigNum& T) const //两个大数之间的相乘运算
    {
        BigNum ret;
        int i, j, up;
        int temp, temp1;
        for (i = 0; i < len; i++) {
    up = 0;
    for (j = 0; j < T.len; j++) {
        temp = a[i] * T.a[j] + ret.a[i + j] + up;
        if (temp > MAXN) {
            temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
            up = temp / (MAXN + 1);
            ret.a[i + j] = temp1;
        } else {
            up = 0;
            ret.a[i + j] = temp;
        }
    }
    if (up != 0)
        ret.a[i + j] = up;
}
ret.len = i + j;
while (ret.a[ret.len - 1] == 0 && ret.len > 1)
    ret.len--;
return ret;
}
BigNum BigNum::operator/(const int& b) const //大数对一个整数进行相除运算
    {
        BigNum ret;
        int i, down = 0;
        for (i = len - 1; i >= 0; i--) {
    ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
    down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
}
ret.len = len;
while (ret.a[ret.len - 1] == 0 && ret.len > 1)
    ret.len--;
return ret;
}
int BigNum::operator%(const int& b) const //大数对一个int类型的变量进行取模运算
    {
        int i, d = 0;
        for (i = len - 1; i >= 0; i--) {
    d = ((d * (MAXN + 1)) % b + a[i]) % b;
}
return d;
}
BigNum BigNum::operator^(const int& n) const //大数的n次方运算
    {
        BigNum t, ret(1);
int i;
if (n < 0)
    exit(-1);
if (n == 0)
    return 1;
if (n == 1)
    return *this;
int m = n;
while (m > 1) {
    t = *this;
    for (i = 1; i << 1 <= m; i <<= 1) {
        t = t * t;
    }
    m -= i;
    ret = ret * t;
    if (m == 1)
        ret = ret * (*this);
}
return ret;
}
bool BigNum::operator>(const BigNum& T) const //大数和另一个大数的大小比较
    {
        int ln;
        if (len > T.len)
return true;
else if (len == T.len) {
    ln = len - 1;
    while (a[ln] == T.a[ln] && ln >= 0)
        ln--;
    if (ln >= 0 && a[ln] > T.a[ln])
        return true;
    else
        return false;
} else
    return false;
}
bool BigNum::operator>(const int& t) const //大数和一个int类型的变量的大小比较
    {
        BigNum b(t);
return *this > b;
}

void BigNum::print() //输出大数
{
    int i;
    cout << a[len - 1];
    for (i = len - 2; i >= 0; i--) {
        cout.width(DLEN);
        cout.fill('0');
        cout << a[i];
    }
    cout << endl;
}

int n;
int main()
{
    ios::sync_with_stdio(false);
    while (cin >> n) {
        BigNum ans = 0;
        for (int i = 1; i <= n; ++i) {
            BigNum temp = 1;
            rep(j, 1, i + 1)
            {
                temp = temp * j;
            }
            ans = ans + temp;
        }
        ans.print();
    }
}

收获与反思

none


Comments

Content